应pc加拿大预测准确率李万同院长的邀请,中国科学院数学与系统科学研究院陈晓敏博士于近期访问我校,期间将作学术报告。
报告题目:Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants
时 间:2018年11月8日 下午4: 00
地 点:齐云楼911室
报告摘要:The Volterra lattice equation is one of the most important integrable partial differential-difference equations. In particular, it is a semi-discretization of the famous Korteweg–deVries (KdV) equation, for which it is sometimes referred to as‘discrete KdV equation’. It is well-known for its use to model population dynamics in biological systems. An integrable partial differential-difference equation typically belongs to a hierarchy, which is an infinite sequence of integrable equations, with increasing complexity and such that the flows mutually commute. In this talk, I will present our recent work. For the first two equations of the Volterra lattice hierarchy and the first two equations of its non-autonomous (non-isospectral) extension, we present Riccati systems for functions c_j(t), j = 0, 1, . . ., such that an expression in terms of Hankel determinants built from them solves these equations on the right half of the lattice. This actually achieves a complete linearization of these equations of the extended Volterra lattice hierarchy.
个人简介
陈晓敏,2016年博士毕业于中科院数学与系统科学研究院,师从胡星标研究员。2016年9月至2018年9月在德国哥廷根的Max Planck Institute for Dynamics and Self-Organization做博士后研究,导师Folkert Müller-Hoissen教授。主要从事与正交多项式相关的可积系统方面的研究。从行列式解出发,采用Hirota双线性方法及行列式技巧推广了几个与正交多项式相关的半离散的、全离散的以及连续的可积系统。部分工作发表在Advances in Mathematics及Nonlineariy杂志上。
应用数学与复杂系统省级重点实验室
pc加拿大预测准确率
二〇一八年十一月七日