应pc加拿大预测准确率徐守军教授邀请,南开大学史永堂教授将于2019年01月13-14日访问我校并作学术报告。
报 告:Some extremal results for planar graphs
时 间:2019年1月13日下午15:00
地 点:齐云楼911报告厅
欢迎广大师生参加!
摘要:Motivated by anti-Ramsey numbers introduced by Erdős, Simonovits and Sós in1975, we study the anti-Ramsey problem when host graphs are plane triangulations. Given a positive integer n and a plane graphH, let Tn(H) be the family of all plane triangulationsT on n vertices such that T contains H as a subgraph. The planar anti-Ramsey number of H, denoted arP(n, H), is the maximum number k such that no edge-coloring of any plane triangulation in Tn(H) with k colors contains a rainbow copy of H. The study of arP(n, H)(under the name of rainbow numbers) was initiated by Horňák, Jendrol', Schiermeyer and Soták [J Graph Theory 78 (2015) 248-257].
Turán-type problems was initiated by Mantel (1907) and Turán (1941), which was generalized soon by Erdős et al. Dirac (1964) and Mader (1967) started to investigate extremal problems for Kt-minor-free graphs. The planar Turán number of F, denoted exP(n, F), is the maximum number of edges of any F-free planar graph on n vertices, which was first studied by Dowden [J. Graph Theory 83(2016) 213-230].
In this talk, we will present some extremal results for planar graphs, especially, some results on planar anti-Ramsey numbers and planar Turán numbers.
报告人简介
史永堂,南开大学教授,博士生导师。2009年6月获南开大学理学博士学位,2014-2015年加拿大西门菲沙大学访问学者,曾受邀到美国、德国、奥地利等国访问交流。主要从事图论与组合优化方面的教学与研究工作,发表学术论文50余篇,出版专著1部(Springer出版社),编著3部(Wiley、CRC),译著2部(高等教育出版社)。主持多项国家自然科学基金和天津市自然科学基金项目,入选天津市人才特支计划“青年拔尖人才”、南开大学“百名青年学科带头人培养计划”等。担任天津市工业与应用数学学会秘书长,中国运筹学会图论组合分会青年理事,中国工业与应用数学学会组织委员会委员、图论组合及其应用专委会委员、复杂网络与复杂系统专委会委员等。
应用数学与复杂系统省级重点实验室
pc加拿大预测准确率
萃英学院
2019年01月07日