欢迎进入 pc加拿大预测准确率

当前位置: 首页 > 学术交流 > 正文

"九章讲坛"第733讲 — Aleksandr Gonchenko 研究员

日期:2023-09-11点击数:

应pc加拿大预测准确率杨璐教授邀请,俄罗斯下诺夫哥罗德国立大学 Aleksandr Gonchenko 研究员将于2023年9月12日至9月22日访问我校并作系列学术报告。

报告题目一:Strange Attractors of Multidimensional Systems

时间:2023年9月19日(星期二)14: 30-15: 30

地 点:理工楼631报告厅


报告题目二:A Review on the Discrete Homoclinic Attractors of 3D Diffeomorphisms

时间:2023年9月19日(星期二)15: 30-16: 30

地 点:理工楼631报告厅

报告摘要:In the theory of dynamical chaos, one of the most important and relevant is its direction that is associated with the study of strange attractors of multidimensional systems (with dimension of phase space ≥ 4 for flows and ≥ 3 for diffeomorphisms). Compared to the lower dimension, there are not too many meaningful results here, but almost all of them are of great importance for the theory of dynamical chaos. In our opinion, one of the most interesting results recently obtained in this direction are connected with the discovery of the so-called discrete homoclinic attractors.

By this term we primarily denote strange attractors of multi-dimensional maps (diffeomorphisms) that contain only one fixed point of saddle type and, hence, they also contain entirely its unstable manifold. In the present talk we give a review on discrete homoclinic attractors of three-dimensional diffeomorphisms both orientable and nonorientable. We discuss the most important peculiarities of these attractors such as their geometric and ho moclinic structures, phenomenological scenarios of their appearance, pseudohyperbolic properties etc. We consider homoclinic attractors of various type such as discrete Lorenz attractors, discrete figure-eight attractors, discrete Shilnikov attractors etc. As illustrative examples, we will consider 3D generalized H´enon maps, 3D maps with the axial symmetry and with the constant Jacobian as well as the model from application –a nonholonomic model of Celtic stone.

欢迎广大师生届时参加!


报告人简介

Aleksandr Gonchenko,下诺夫哥罗德国立大学研究员,分别于2010年及2013年在俄罗斯下诺夫哥罗德国立大学获得硕士和博士学位。主要从事动力系统、分岔理论、吸引子和混沌等领域的研究工作。2014-2018年主持两项俄罗斯科学基金项目,目前仍在负责主持一项俄罗斯科学基金项目。


甘肃应用数学中心

甘肃省高校应用数学与复杂系统省级重点实验室

pc加拿大预测准确率

萃英学院

2023年9月11日